您现在的位置: 17教育网 >> 中考试卷 >> 山东 >> 荷泽市 >> 数学 >> 正文

2017菏泽市中考数学试卷及答案

2017-7-1 编辑:djw001 查看次数: 手机版
18. 如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.
(1)求一次函数和反比例函数的表达式;
(2)求△AOB的面积.

【考点】G8:反比例函数与一次函数的交点问题.
【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;
(2)先求出OB的解析式式,进而求出AG,用三角形的面积公式即可得出结论.
【解答】解:(1)如图,过点A作AF⊥x轴交BD于E,
∵点B(3,2)在反比例函数y=的图象上,
∴a=3×2=6,
∴反比例函数的表达式为y=
∵B(3,2),
∴EF=2,
∵BD⊥y轴,OC=CA,
∴AE=EF=AF,
∴AF=4,
∴点A的纵坐标为4,
∵点A在反比例函数y=图象上,
∴A(,4),


∴一次函数的表达式为y=﹣x+6;
(2)如图1,过点A作AF⊥x轴于F交OB于G,
∵B(3,2),
∴直线OB的解析式为y=x,
∴G(2,),
∵A(3,4),
∴AG=4﹣=
∴S△AOB=S△AOG+S△ABG=××3=4.


 
19. 今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A、B、C、D四个等级,并绘制了如图不完整的扇形统计图和条形统计图.

根据以上信息,解答下列问题:
(1)本次评估随即抽取了多少甲商业连锁店?
(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;
(3)从A、B两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.
【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.
【分析】(1)根据A级的人数和所占的百分比求出总人数;
(2)求出B级的人数所占的百分比,补全图形即可;
(3)画出树状图,由概率公式即可得出答案.
【解答】解:(1)2÷8%=25(家),
即本次评估随即抽取了25家商业连锁店;
(2)25﹣2﹣15﹣6=2,2÷25×100%=8%,
补全扇形统计图和条形统计图,
如图所示:
(3)画树状图,
共有12个可能的结果,至少有一家是A等级的结果有10个,
∴P(至少有一家是A等级)==


 
20. 如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.
(1)求证:∠BAC=∠CBP;
(2)求证:PB2=PCPA;
(3)当AC=6,CP=3时,求sin∠PAB的值.

【考点】S9:相似三角形的判定与性质;MC:切线的性质;T7:解直角三角形.
【分析】(1)根据已知条件得到∠ACB=∠ABP=90°,根据余角的性质即可得到结论;
(2)根据相似三角形的判定和性质即可得到结论;
(3)根据三角函数的定义即可得到结论.
【解答】解:(1)∵AB是⊙O的直径,PB与⊙O相切于点B,
∴∠ACB=∠ABP=90°,
∴∠A+∠ABC=∠ABC+∠CBP=90°,
∴∠BAC=∠CBP;

(2)∵∠PCB=∠ABP=90°,
∠P=∠P,
∴△ABP∽△BCP,

∴PB2=PCPA;

(3)∵PB2=PCPA,AC=6,CP=3,
∴PB2=9×3=27,
∴PB=3
∴sin∠PAB===


21. 正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.

(1)如图1,若点M与点D重合,求证:AF=MN;
(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为t s.
①设BF=y cm,求y关于t的函数表达式;
②当BN=2AN时,连接FN,求FN的长.
【考点】LO:四边形综合题.
【分析】(1)根据四边形的性质得到AD=AB,∠BAD=90°,由垂直的定义得到∠AHM=90°,由余角的性质得到∠BAF=∠AMH,根据全等三角形的性质即可得到结论;
(2)①根据勾股定理得到BD=6,由题意得,DM=t,BE=t,求得AM=6﹣t,DE=6t,根据相似三角形的判定和性质即可得到结论;
②根据已知条件得到AN=2,BN=4,根据相似三角形的性质得到BF=,由①求得BF=,得方程=,于是得到结论.【解答】解:(1)∵四边形ABCD 是正方形,
∴AD=AB,∠BAD=90°,
∵MN⊥AF,
∴∠AHM=90°,
∴∠BAF+∠MAH=∠MAH+∠AMH=90°,
∴∠BAF=∠AMH,
在△AMN与△ABF中,
∴△AMN≌△ABF,
∴AF=MN;

(2)①∵AB=AD=6,
∴BD=6
由题意得,DM=t,BE=t,
∴AM=6﹣t,DE=6t,
∵AD∥BC,
∴△ADE∽△FBE,
,即
∴y=
②∵BN=2AN,
∴AN=2,BN=4,
由(1)证得∠BAF=∠AMN,∵∠ABF=∠MAN=90°,
∴△ABF∽△AMN,
=,即=
∴BF=
由①求得BF=
=
∴t=2,
∴BF=3,
∴FN==5.

22. 如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x轴,垂足为C.
(1)求抛物线的表达式;
(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;
(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.

【考点】HF:二次函数综合题.
【分析】(1)把B(4,0),点D(3,)代入y=ax2+bx+1即可得出抛物线的解析式;
(2)先用含t的代数式表示P、M坐标,再根据三角形的面积公式求出△PCM的面积与t的函数关系式,然后运用配方法可求出△PCM面积的最大值;
(3)若四边形BCMN为平行四边形,则有MN=DC,故可得出关于t的二元一次方程,解方程即可得到结论.
【解答】解:(1)把点B(4,0),点D(3,),代入y=ax2+bx+1中得,
解得:
∴抛物线的表达式为y=﹣x2+x+1;
(2)设直线AD的解析式为y=kx+b,
∵A(0,1),D(3,),


∴直线AD的解析式为y=x+1,
设P(t,0),
∴M(t, t+1),
∴PM=t+1,
∵CD⊥x轴,
∴PC=3﹣t,
∴S△PCM=PCPM=(3﹣t)(t+1),
∴S△PCM=﹣t2+t+=﹣(t﹣)2+
∴△PCM面积的最大值是
(3)∵OP=t,
∴点M,N的横坐标为t,
设M(t, t+1),N(t,﹣ t2+t+1),
∴MN=﹣t2+t+1﹣t﹣1=﹣t2+t,CD=
如果以点M、C、D、N为顶点的四边形是平行四边形,
∴MN=CD,即﹣t2+t=
∵△=﹣39,
∴方程﹣t2+t=无实数根,
∴不存在t,使以点M、C、D、N为顶点的四边形是平行四边形.

上一页  [1] [2] 

下载地址一
相关内容
热门推荐
热门图文
Copyright · 2011-2017 17jiaoyu.com Inc. All Rights Reserved. 17教育网站 版权所有 备案号:浙ICP备12027545号-2